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Green’s Function for Layered Lossy
Media with Special Application to

Microstrip Antennas
I

LUC BEYNE AND DANIEL DE ZUTTER

Abstract — Suitable Green’s dyadics for the fields generated by a surface

current density in a plane parallel to the interface of a layered isotropic

structure are determined. Special care is taken to ensure that the Green’s

function can still be calculated in the source region by circumventing the

numerical problems by analytical procedures. As it is our purpose to nse

the obtained Greeu’s function in order to cafculate the power deposition

from a microstrip antenna inside a layered biological tissue, the media

involved can be highfy Iossy. An analytical method is developed to avoid

numericaf problems arising from the exponential decay of the fields due to

these losses.

I. INTRODUCTION

T HE PROBLEM OF electromagnetic propagation in

stratified media, both isotropic and anisotropic, has

been studied extensively in the past. A short review of

relevant papers can be found in the introductions of three

recent papers on the same topic [1]–[3]. The present paper

focuses on the calculation of a suitable Green’s function

for the fields generated by a surface current density in a

plane parallel to the interface of a layered isotropic struc-

ture. This situation is of great practical importance for the

calculation of microstrip antennas buried in a stratified

medium. Special care is taken to ensure that the Green’s

function can still be calculated in the source region by

circumventing the numerical problems by suitable analyti-

cal procedures. As it is our purpose to use the Green’s

function in order to calculate the power deposition inside a

layered biological tissue, the media involved can be highly

lossy. An analytical method is developed to avoid numeri-

cal problems arising from the exponential decay of the

fields due to these losses. As in [4] and [5], our full-wave

analysis starts from the spatial Fourier domain.

In contrast to our approach, the FFT method proposed

in [2] is not suited for calculations if observation point and

source point coincide. This is essential if the Green’s

function must serve as the basis for solving an integral

equation for the current on a microstrip patch. The calcu-

lations presented in [1] did not lead to a formulation
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suitable for solving microstrip antenna problems, as indi-

cated in the introduction of [6], where a mixed-potential

integral equation is stated to be superior. The approach

based on a vector potential and a scalar potential is also

adopted in [3] to compare quasi-static results with the

results from a full-wave analysis for a horizontal dipole on

a microstrip. Although our approach is basically similar to

the one proposed in [1], we show that additional analytical

efforts enable us to circumvent difficulties with the conver-

gence of the inverse Fourier-Bessel integrals in the plane

of the source. This leads to a correct evaluation of the

Green’s function everywhere and paves the way to solving

the integral equation for a microstrip antenna in a lossy

stratified medium. The solution of this problem for a

microstrip applicator radiating into a layered biological

medium is proposed elsewhere [7].

II. GEOMETRY AND GENERAL FORMULATION

OF THE PROBLEM

We restrict our attention to the layered medium shown

on Fig. 1. The half-space z >0 is bounded by a perfectly

conducting plane at z = O and the excitation is a surface

current J~ at the first interface z = dl. The layers are

lossy; hence the c‘s can take complex values. The analysis

can easily be extended to other configurations. The

sinusoidal time dependence exp ( jwt ) is suppressed

throughout the text. From the linearity of the problem it

follows that the E and H fields everywhere in space

depend upon the surface current density J~ as

E(r) =j@(rlr-’)oJ~(r’) dS’

H(r) =//~h(rlr’). J~(r’) dS’.
-- —

follows :

(1)

Here ~, and ~~ represent the electric and magnetic Green’s

dyadic. The point with position vector r = rt + ZU2 is an

arbitrary observation point. The position vector r’= r: +

dluz refers to a variable integration point on the surface of

the metal patch (see Fig. 1). As the configuration under

consideration is homogeneous in the transversal (x, y)

directions, both dyadics satisfy the property:

(2)

The fields satisfy Maxwell’s equal ions in each layer of the
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Fig. 1. Surface current density radiating into a layered medium

medium:

curl E = – jupH

curl H = jticE

divE = O

divH = O. (3)

Both c and p can be complex.

III. SOLUTION IN TEIE FOURIER DOM&IN

As a first step we introduce the Fourier transformation

of all fields with respect to the transversal coordinates. The

vector k = ICXUY+ kYuY represents the position vector in

Fourier space. The Fourier transformation and its inverse

are defined as follows:

f(z, k)=~+m~+mf(r)exp (jk. r)dxd’
—w —m

.exp(– jk. r)dkXdkY. (4)

As there is no danger for confusion, we have not intro-

duced a special symbol to indicate the Fourier transforma-

tion. A function and its transformation are only dis-

tinguished by their arguments.

It is easy to see that the transformed fields satisfy

d 2E
—–1’2E=0. .
dz ‘

d 2H
—–F2H=o
dz 2

(5)

where r 2 = k: + k; – k 2. In each layer the wavenumber k

is given by kON, where k. = ti/c is the free-space wave-

number and N = (c ~p,)lzz is the complex refractive index

of that layer. r itself is defined as the root of

nonnegative real or imaginary part. The solution

given by

E(z, k)= Aexp(–rz) +Bexp(17z)

H(z, k)= Kexp(–rz) +Lexp(r. ).

ITz with

of (5) is

(6)

R-.
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t
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Fig 2. Boundary conditions at the interface of two media.

The vectors K and L are not independent of A and

The relation between them will be established below.

B.

As a second and essential step, we introduce the projec-

tion of every vector on three orthogonal directions. An

arbitrary vector W is characterized by the three number

W=, W’, and W“ as follows:

W= W,uz+[W’k +W’’(uZ xk)]/(k:+ k;). (7)

It is clear that E’, E“, E:, H’, H“, and Hz are of the

form (6) but with the vectors replaced by scalars. With the

notation introduced above, the divergence equations in (3)

reduce to dEz /d. = jE’ and to dHz/dz = jH’. The rotor

equations projected on the z axis yield the relations E“ =

upH= and H’ = – UCEZ. Taking the above results and

considerations into account, we finally arrive at the follow-

ing representation of the fields in each layer:

E’(., k)= A’exp(– 17.) +B’exp(17. )

H“(z,k) = (j~c/17)[A’exp( -rz)-B’exp(I’z)]

Ez(z, k) = (–j/r)[A’exp(- r.)- B’exp(r.)] (8)

and

E“(z,k)= A’’exp(-17.)+ B’’exp(rz)

H’(z, k) = [r/(– jtip)][A’’exp (- 17.)- B’’exp(z)])]

Hz(., k) = (l/~p)[A’’exp( –l7.)+B’’exp(rz)]. (9)

As shown by (8) and (9), this representation of the fields

falls apart into two sets of decoupled equations: one set

for E’, H“, and E, and a second set for E“, H’, and Hz.

The first set is a TM mode as the z component of the

magnetic field is zero. The second set is a TE mode. The

couples ( E‘, H“) and ( E“, H’) behave as voltage and

current across a transmission line. The constants A’, B’

and A“, B“ must be determined by applying the boundary

conditions between the layers of the medium. The continu-

ity of the tangential electric field between layer 1 and layer

2, (see Fig. 2) leads to

E;– E~=O

E;’ – E;’ = O. (lo)

The tangential magnetic field is also continuous across

the boundary of two layers except for z = dl, where the

Fourier-transformed surface current density ~ is present

(see Fig. 2). In that case the appropriate boundary condi-
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Fig. 3. Transmission line equivalent with unit current source.

tion is

H{– H;=– J;’

H;~–&’=+J;. (11)

Additional boundary conditions are given by the fact that

E‘ and E” are zero at the perfectly conducting ground

plane, i.e., for z = O; hence A;+ B; = O and A/+ B?= O.

Finally, in the uppermost layer, only outgoing waves can

exist. This implies B; = O and B;’ = O.

When we take all boundary conditions into account, the

final form taken by the fields can be expressed very

concisely by introducing the following functions:

e’(z, k) = –E’(z, k)/J~(k)

e“(z,k) = +E’’(z, k)/J~’(k)

Ii(z, k) = –H’’(z, k)/J:(k)

M’(z,k) = +H’(z, k)/J:’(k). (12)

In both cases, e and h in each layer can be written as

e(z, k)=a(k)exp (– I’z)+~(k)exp(17z)

h(z, k) =Y(k)[a(k)exp(- rz)–~(k)exp(rz)]. (13)

The e and h functions can be determined through the

solution of a single transmission line problem. This trans-

mission line equivalent is shown in Fig. 3. The source is a

unit current source located at z = dl. In the single-prime

case, the characteristic admittance Y = Y’= ju~ / r. In the

double-prime case Y= Y“ = – r/@p. The transmission

line formalism to study stratified media was extensively

used in the past [8]–[11]. The determination of the a‘s and

~‘s in each layer seems straightforward. However, due to

the presence of increasing and decaying exponentials, the

numerical problem is rather heavy and some analytical

preprocessing must take place in order to develop a

numerically stable procedure, especially in the presence of

highly lossy materials, as in the case of biological tissues.

At the first interface (z = all), the presence of the surface

current density leads to the following relationship:

(l+~)exp(rl–r’,~dl
(1/2)

(1–~Jexp(I’1+r2Jdl

(l–~)exp–(rl+r,)d, O+~Jexp(r,-I’l)dl

2,. ... n – 1) we have

(l+u)exp(~-~+J~, (l-u) exp(~+, +~)ti,

‘1’2) (l-u) exp-(~+~+l)d, (l+u)exp(~+, -~)d,

a,+l a,

/$+, = fj
(15)

where v = ~+ ~/ Y,. A modified form of the matrices in

(14) and (15) and their inverses forms the basis of a

suitable algorithm for the calcuk~tion of the a‘s and ~ ‘s.

We refer the reader to the Appendix for the final results

and a proof of the numerical stability of the proposed

method.

IV. INVERSE FOURIER TIUNSFORMATION AND

FOURIER–BESSEL INTEGRALS

A. General Formulation
. .

The dyadics ~~(rlr’) and ~h(rlr’) both satisfy the prop-

erty expressed by (2). If we represent the Fourier transfor-— —
mation of ~e(rlr’ = dl<z) and ~h(rlr’ = dluz), i.e., for—
rt’ = O by, respectively, ~,( z, k) and ~k (z, k), the convolu-

tions in (1) together with the property (2) lead to the

following result in the Fourier domain:

E(z, k)=:, (z, k). Js(k)

H(z, k) ‘~k(Z, k)..l~(k). (16)

We introduce the polar coordinates A and @in the (kX, kY)

plane: kX = A cos @ and kY = A sin +. If we take a close

look at e and h, we see that they depend only upon A and

not on +. We now turn to the x, y, and z components of

E(z, k) and H(z, k), taking into account the projection

equation (7). Starting from (8), (9), and (12), E an,d H can

be expressed in terms of the x and y components of

J~(k). This leads to the following final form for the

Green’s dyadics:

– e’cos2@ + e“sin2@ - (e’+ e“)cos+sin+

= -(e’+ e“)cos@s in@ - e’sin’++ e“cos’$

(1/u6)h’Aces@ (1/u~)h’Asin@

(17)

and

- (h”- h’)cos$sin$ h“cos2q5 + h’sin2@

~~(z,k) = – h“sin2$ – h’caz~ (h”- h’)cos@sin@

- (1/ap)e”A sin+ (1/tip )e’’Acos~

(18)

~’ (–1/2YlJexp(I’ldl) = al
(14)

Our final goal is to calculate the inverse Fourier transfor-

B, + (1/2 Yl)exp(- rldl) B, mation of the above dyadics. For this purpose we intro-

duce the polar coordinates p and O in the (x, y) plane:
where u = Y2/ Y1. For the other interfaces (z = d,, j = x = p cos 8 and y = p sin6. If we also introduce + = @– 6,



878 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 5, MAY 1988

the inverse Fourier transformation in (4) takes the form

~(P, @,z) = (1/2n)2~~~2”~(z, ~,$)e-’~pcos+~d~d~.

(19)

If ~(z, A, $) can be written as

f(z, A,@) = : cm(z, A,e)cosnz+
~=()

+ ~ s~(z, A, f3)sinm! (20)
~=o

then ~( p, 6, z) becomes

f(P>e>z) = (1/2m) f (-j)’”
~=()

J (‘cm z, A,o).ln, (Ap)AdA. (21)
o

To obtain this result we used the following integrals:

/

2T
cos m6e ‘J’cose d6=27r(-j)m.l*(z)

o

f

2.’T

sinm8e–J’c0s0d6 = O. (22)
o

We now apply the results given by (20) and (21) to find the

inverse Fourier transformation of the dyadics in (17) and

(18). We remark that all elements of ~e and ~~ can be

written in the form (20) but with m restricted to O, 1, or 2.

Application of (21) gives the following final result:

w; – W; COS26 – W~sin28

8=(r10) = – W~sin26’ w;+ W; COS26

W:COS e W: sin/3

– W~sin26’ w:+ W; COS20

Zh(rlO) = – w; + W: COS26 W[ sin 28 (23)

– W[ sin 9 W:cos e

The argument (rIO) of the dyadics indicates that the result

is valid for a point source located at r’ = dluz ,_hence f~r

x‘ = y‘ = O. The property (2) allows us to find ~, and ~h

for arbitrary r and r’. The ~ in (23) are

~(p, z)=(l\2n)~~wi(z, X)~(Xp)Ad A (24)
o

with the following values for the w,:

w;= (– e’+ e“)/2 ‘ - (h’+ k“)/2Wo —

w~=h’A/(jtiE) h = e“A/( jup)WI

w;= -(e’+ e“)/2 w;= (h’- h“)/2. (25)

To calculate ~ it is important to know the kind of

singularities that occur in the complex X plane. Although a

strict proof can be given, we only state the final result,

which is a familiar one [12]. The only branch cut is the

branch cut originating from r. of the uppermost layer of

the medium. As we only treat the case of a layered

TABLE I

BEHAVIOR OF THE w FUNCTIONS FOR k + O (x = z – dl )

term in A2e – ‘8X in Ae–kax in e-A”

—
%’ ~ – Al /2 – Al S/2 Al B] /4+ </2 – AlS2/4

8wfA A, A, S – AI D1/2+ A1S2/2

—
w; ~ – Al /2 – Al S/2 Al B1/4 – ~ /2 – A1S2/4

8W:A o ~/2+ G1/2 ~ S/2+ Gj S/2

—
w; ~ o – G, –GIS

8w-!’A o E/2– G,/2 E S/2 – G, S/2

biological medium, the uppermost layer of the stratified

medium consists of lossy material. In that case there are no

poles on the real A axis and the branch point itself is not

located on that axis. These considerations lead to the

conclusion that part of the integration in (24) can be

carried out along the real A axis. This is similar to the

approach used in [3], where it is stated that due to the

presence of losses integration along the real axis becomes

the most efficient.

B. Analytical Integration of Part of the Integrals

A first difficulty in the calculation of (24) is the behavior

of the integrands w,A for A - co. To find this behavior we

start from

lim r= ~~m~(A2- k2)l’2=X–k2/2A. (26)
h-cc

The value of k was defined by (5). Substituting this limit

in the a‘s and /3’s given in the Appendix and inserting

those values in the expressions for the e‘s and the h ‘s, the

following final results are obtained: For each layer j =

2,.. ., n the product Aw, (z, A), with i = 0,1,2, in the in-

tegrand of (24) decays exponentially with a factor

exp [ – A( z – all)] (8 = 1 in Table I). In the first layer

(j= 1) this product exhibits an exponential growth with

this same factor (8 = – 1 in Table I). For the six different

products (subscript O, 1, or 2 and superscript e or h) the

first three terms of the expansion for A ~ co are given in

Table I. The coefficients A,, B,, Cl, DJ, <, GJ, and S1 are

given by

Sj= [k}(z–dJ_l) +k}-l(dJ-1–dj-2)

+ . . . + k;(d2 – 4)]/2

BJ=D1+k: Cl = – jmpJGJ. (27]

These results are valid for j = 2,. .,., n. If j = 1 we have

S1=k:(dl–z)/2

A1=A2 B1 = B2 cl=c2,

F1 = qF2/e2 Dl= – <2D2/cl G1 = p2G2/pl.

(28)
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TABLE II
CONTRIBUTION TO (24) COMING FROM THE ASYMPTOTIC VALUES

OF TED?lNTEGRANDS IN (25) WITH x = z – dl AND
~= (X2 + Pz)–vz

j=() i=l j=2

~=() T (l–x,)/p (1 - xT)2/(pL)

~=1 3 pT3 [2 - (2X3+ 3xp2)T3 ]/p”

~=z (2 X2: P’)T5 3pXT5 3pv

As the arguments of the Bessel functions < in (24) are

real, the results in Table I show that the integrands of (24)

have an exponential decay determined by the longitudinal

distance (z – dl) between the location of the exciting

current and the observation point. This ensures conver-

gence of the integration over A from O to co. However, this

is not the case when this distance becomes zero, i.e., in the

plane of the exciting current. In that case the integrands

become infinite as a power of (A )3/2 for the case of the

electric field (superscript e) and as a power of (A )112 for

the case of the magnetic field (superscript h). This can

easily be checked from Table I in conjunction with the fact

that the Bessel functions {(Ap) have a (Ap) - 1/2 depen-

dence for A -+ m and for a fixed p value. This special case

for z = dl is very important if the Green’s dyadics are to

be used as the basis for the solution of an integral equa-

tion. The integral of the asymptotic parts given in Table I

can be calculated analytically. To that purpose we need the

following integrals:

~m~m4(~P)e-”d~ form= 0,1,2 andi= 0,1,2.

(29)

The notation x stands for the distance (z – all). These

integrals can be derived from results in the literature [13].

The final results are shown in Table II, where ~ = (X2+

P2) -1’2.
Although it would be possible to disregard the cases

where (z – dl) differs from zero, we take advantage of the

fact that the behavior for A -+ m can be found analytically

to reduce the burden on and to enhance the speed of the

numerical calculation. Strictly speaking, the integrals in

(29) with x = O do not exist. However, in the problem we

are dealing with we are only interested in the limit x ~ O.

It is not allowed to interchange the integration and the

limiting process. The limits for x = O are easily found from

Table II. These limits become singular for p ~ O. As for
x -+ (), this is also important when using the Green’s dy-

adics as the kernel of an integral equation if source and

observation point coincide. This difficulty is one of the

reasons why the authors in [6] state that they abandoned

the use of the above Green’s dyadics for their purpose. It is

shown in another paper [7] that this difficulty can be

circumvented, keeping the advantage of the Green’s func-
tion approach presented here.

C. Numerical Calculation of the Remaining
Fourier – Bessel Integrals

If we subtract the parts shown in. Table II from the

integrands in (24) and determine the integral of the sub-

tracted parts in the way discussed

calculate integrals of the form

~mf(x,~)<(~p)e-A’dA
o

879

above, we only need to

fori= 0,1,2 (30)

where x = z – dl and ~(x, A) = 0(1/A) for A ~ co. As

long as p # O the integral in (30)1 is convergent, even for

x = O. In this last case, the absolute value of the integrand

decays as l/ A3/2. If, however, p = O, the integral in (30)

becomes zero for i =1, 2 but difficulties can be expected

for i = O and x = O. In that last case the l/A behavior of

~(x = O, A) no longer suffices to make the integral conver-

gent. Two types of such integrals have to be considered. A

first integral is derived from W; in (24). In that case one

can rather easily prove that ~(x, = O, A) = 0(1/A2) for A ~

co. A second integral, however, is derived from W/ and

the integral is divergent for p = O and x = O. To deal with

this difficulty we could follow an approach similar to the

one adopted in the previous section. As our interest is

more focused on the calculation of the electric Green’s

dyadic as the basis for the solution of an electric field

integral equation, we will not go into further details here.

Working with lossy media, neitlher a branch point nor

poles are located on the real A axis. For the actual

numerical integration we subdivide the integration interval

into two parts:

~ACf(x,A]J(Ap)e-AxdA+ /mf(x,A)J1(Ap)e-AxdA.
o h=

(31)

The upper limit A ~ is chosen such that both ~(x, A) and

J(AP) take their asymptotic form for A ~ co. The first

integral in (31) can be rewritten a~s

~mg(x,A)J(Ap)dA fori= 0,1,2. (32)

This integral is calculated using a Romberg extrapolation

scheme. For the integrals under consideration this scheme

proved to be a very efficient one.

Finally, the second integral in (31) must be calculated.

To this end wc introduce Ap as a new integration vari-

able, rewrite the Bessel function J(Ap) as [Hj2J(Ap) +

H@J(Ap)]/2, and introduce the asymptotic form for large

ar~uments of the Hankel functions:

H(l)(z) = [Pi(z)+ j<?I(z)]eJ(z-a)

H:2)(Z) = [P,(z)– jQ, (z)] e-J(’-&)z (33)

with

a= (2i+l)(n/4)

P,(z) = (2/mz)l’2[1– cl/rz2+ cz/z4 + . . . ]

Q,(z) = (2/~z)l/’[d1/’z -- d2/z3 + . ..]. (34)

The constants cl, C2, . . . and dl, d2, ..- are to be found

in the literature [13]. The integral to be calculated takes the
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form APPENDIX

SOLUTION OF THE TRANSMISSION LINE PROBLEM FOR

(1/2p)e-J” f~~(z, A){ Pi(Ap)+ jQ,(Ap)] e-8(’) (kP)pdA

+ (“

THE Ci’S AND P ‘S

JA# We will not go into the details of the calculations. The

final result is -
/2p)e+J”J~~(z, A)

[k2][Mnn_,] . . . [M32][N2]c
al = — Tle–rldl

[k,][M.H_l] . . . [M,l][kl]

P1(Ap)– jQZ(Ap)] e-6(2) (A”)pdA (35) ~rndn_, –rn_,(dn_, –dn_2) . –r, (d, –dl)

an= –Tn(l–e–2r1d’) “
where ~(1) = x/p – .j and P@) = x/p + j. For the first [k2][M.n_l] . . . [M,l][kl]

integral in (35) we change the integration path from the

real axis to the line Ap = t//3(1) + A ~p, with O < t < co. The
[~,] = - ~(1- e-lrld,)er,d,., -r,-l(d,-l-d,,)

value of A ~ can be chosen such that no pole or branch cut . [%,+1] ~~~ [K,.][kn]
contributions need be taken into account by the change of

[k2][Mn._l] ~0, [M21][k1]
integration path. A similar reasoning can be applied to the

second integral in (35). For that integral we change the

integration path to Ap = t/~(2) + A .P. Both integrals can with [c,]= p:r,d, -
be taken together. The final result is J

(l\2p)Jmg

where g(t) takes the form

exp[–(~(l)ACp+j

In (Al) j takes the values 2 to n – 1. For Tl,

t)e-’dt (36) have

T. =1/(2 Y; Y;_l. . . Y{).

[)] f[z, A(l)] In each layer the quantity Y’=

[~,~+ J and [Mj+ ~,] are defined as

~{P, [A(’)p] + jQ, [AO)P] }/@l’

+exp[–(~(2)ACp –ja)]~[z, A(2)]
P-,;+ll = (1/2)

(m’+n’)
(m’- n’)e-2rdl

–r2(d2–dl)

(Al)

~, and T. we

.. Y<)

(A2)

The matrices

(m’- n’)e’r+ld,

(m+nf)ew,+,-r,v,

(A3)

.{ P, [A(’)p] - jQ1 [A(2jp] }/@2J

and with A(l) = t//3 (l)p + A, and A(’) = t/f2 (’)p + A ~. The [“J+lj]

(3’7) and

mulas.

V. CONCLUSIONS where

We have shown in this paper that the determination of duced

the electric and magnetic fields everywhere in space gener- [k~]:

ated by a surface current density located at the interface of

a planar stratified medium reduces essentially to the calcu-

lation of Fourier–Bessel integrals. Although this result is

integral (36) can now be evaluated in a numerically accu-

rate fashion by applying Gauss–Laguerre quadrature for-
= ~1/2) (m’+ n’)e-’(r,-r,+,)d, (n’- m’)e’r,+ld,

(n’- m’)e-2rd (m’+ n’)

(A4)

m’=l/YJ~l and n’= l/Yj’. We have also intro-

the matrices [cJ], j =1,. c ., n, [IV], [kl], [k2] and

[c,] = ;
l/2e2r’dl

[N] = _ 1,2

quite familiar, great effort ;as spent to- formulate the
problem in such a way that numerical difficulties in the

calculation of those Fourier–Bessel integrals can be cir-

cumvented. The analytical procedures introduced for that

purpose make it possible to calculate the Green’s dyadics

in the source region itself and in the presence of media

with high losses. This is an essential step towards the use

of these dyadics in the formulation of an integral equation

for the surface current on a microstrip antenna. It is shown

elsewhere [7] that such an integral equation based on the

dyadics calculated in the present paper leads to the solu-

tion of the power deposition of a microstrip antenna inside

a layered biological tissue.

[k,] = _; [kl] =10 1] [k.] = ; . (A5)

The results in (A2), (A3), and (A4) show that only divi-

sions by Y’ occur. As Y’= juc / 17 no difficulty occurs

when 17 becomes zero. Analogous results are found for the

double-primed quantities. In that case T1, ~, and T.

become

Tl=l q.= (y11y2. . . Y/)/2

The matrices [M,;+ ~] and [M,{ ~,] are defined in the same

way as their single-primed counterparts in (A3) and (A4),
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but m’ must be replaced by m“ = ~“ and n’ must be

replaced by n“ = ~~l. Note that now only products by Y“

occur. As Y“ = – r/jtip no difficulty occurs when r be-

comes zero. Remember that & = O and /31= – al for both

single- and double-primed quantities.

Finally we show that only decaying exponential play a

role in the matrix products occurring in (Al). We first look

at the denominator of the a‘s and /3 ‘s. We also need the

following general result:

A11~-2(rI-?+I)dJ A12e2q+1dj

IBle-’r’+’d’+’%I A e_qd,
21 A 22

= [cle-2r,d, C,[ (A7)

where

Cl= BIA11e-2r,+1cd,+1-d,) + B2A21 ‘

C2 = B1A12e-2rj+1(dl+ ’-djl + B2A22. (A8)

Only decaying exponential are involved in the calculation

of Cl and C2. The denominator in (Al) is calculated

starting from [k z]. Multiplication with [ Mnn 1 ~] gives a row

matr&c of the form of the B matrix on the left-hand side of

(A7). [Mfl_1~_2] is of the form of the A matrix in (A7).

Hence, multiplication results in the C matrix, which has

the same form as the B matrix. The above process is

repeated at every step of the denominator calculation.

Analogous reasoning applies to the numerator of al. For

the calculation of the numerator of [cj] we start from [k.].

The stability of the procedure can be proved using differ-

ent A, B, and C matrices:

c1 All A12e2r,+1dj B1

C2e –2r,d, =
A21e-2rjdJ A22e2@,+1- r,)ff, B2e-2rj+,d,+1

(A9)

where

Cl= B2A12e-2r,+l(d~+l-d,) + BIAII

C2 = B2A22e-2rJ+’(dJ+’-dJ) + B1A21. (A1O)
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