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Green’s Function for Layered Lossy
Media with Special Application to
Microstrip Antennas

LUC BEYNE anp DANIEL DE ZUTTER

Abstract — Suitable Green’s dyadics for the fields generated by a surface
current density in a plane parallel to the interface of a layered isotropic
structure are determined. Special care is taken to ensure that the Green’s
function can still be calculated in the source region by circumventing the
numerical problems by analytical procedures. As it is our purpose to use
the obtained Green’s function in order to calculate the power deposition
from a microstrip antenna inside a layered biological tissue, the media
involved can be highly lossy. An analytical method is developed to avoid
numerical problems arising from the exponential decay of the fields due to
these losses.

I. INTRODUCTION

HE PROBLEM OF electromagnetic propagation in

stratified media, both isotropic and anisotropic, has
been studied extensively in the past. A short review of
relevant papers can be found in the introductions of three
recent papers on the same topic [1]-[3]. The present paper
focuses on the calculation of a suitable Green’s function
for the fields generated by a surface current density in a
plane parallel to the interface of a layered isotropic struc-
ture. This situation is of great practical importance for the
calculation of microstrip antennas buried in a stratified
medium. Special care is taken to ensure that the Green’s
function can still be calculated in the source region by
circumventing the numerical problems by suitable analyti-
cal procedures. As it is our purpose to use the Green’s
function in order to calculate the power deposition inside a
layered biological tissue, the media involved can be highly
lossy. An analytical method is developed to avoid numeri-
cal problems arising from the exponential decay of the
fields due to these losses. As in [4] and [5], our full-wave
analysis starts from the spatial Fourier domain.

In contrast to our approach, the FFT method proposed
in [2] is not suited for calculations if observation point and
source point coincide. This is essential if the Green’s
function must serve as the basis for solving an integral
equation for the current on a microstrip patch. The calcu-
lations presented in [1] did not lead to a formulation
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suitable for solving microstrip antenna problems, as indi-
cated in the introduction of [6], where a mixed-potential
integral equation is stated to be superior. The approach
based on a vector potential and a scalar potential is also
adopted in [3] to compare quasi-static results with the
results from a full-wave analysis for a horizontal dipole on
a microstrip. Although our approach is basically similar to
the one proposed in [1], we show that additional analytical
efforts enable us to circumvent difficulties with the conver-
gence of the inverse Fourier—Bessel integrals in the plane
of the source. This leads to a correct evaluation of the
Green’s function everywhere and paves the way to solving
the integral equation for a microstrip antenna in a lossy
stratified medium. The solution of this problem for a
microstrip applicator radiating into a layered biological
medium is proposed elsewhere [7].

II. GEOMETRY AND GENERAL FORMULATION
OF THE PROBLEM

We restrict our attention to the layered medium shown
on Fig. 1. The half-space z > 0 is bounded by a perfectly
conducting plane at z=0 and the excitation is a surface
current Jg at the first interface z=d,. The layers are
lossy; hence the ¢’s can take complex values. The analysis
can easily be extended to other configurations. The
sinusoidal time dependence exp (jw?) is suppressed
throughout the text. From the linearity of the problem it
follows that the E and H fields everywhere in space
depend upon the surface current density J; as follows:

E(r) =ffa,(r|r’)-JS(r’) ds’
H(r) = [ [G,(rr) Js(r) d5'. M

Here G, and G, represent the electric and magnetic Green’s
dyadic. The point with position vector r=r, -+ zu_ is an
arbitrary observation point. The position vector r'=r’ +
d,u, refers to a variable integration point on the surface of
the metal patch (see Fig. 1). As the configuration under
consideration is homogeneous in the transversal (x, y)
directions, both dyadics satisfy the property:

G(rlr) =G(r—r/\dw,). (2)

The fields satisfy Maxwell’s equations in each layer of the
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Fig. 1. Surface current density radiating into a layered medium.

medium:
curl E = — jopH

curl H= jweE
divE =0
divH =0. (3)

Both ¢ and p can be complex.

III. SOLUTION IN THE FOURIER DOMAIN

As a first step we introduce the Fourier transformation
of all fields with respect to the transversal coordinates. The
vector k =k u +k,u, represents the position vector in
Fourier space. The Fourier transformation and its inverse
are defined as follows:

1k = [ 7o (ker) dvay

1= " [
-exp(— jk-r) dk, dk,. (4)

As there 1s no danger for confusion, we have not intro-
duced a special symbol to indicate the Fourier transforma-
tion. A function and its transformation are only dis-
tinguished by their arguments.

It is easy to see that the transformed fields satisfy

d2

— —T2=0

dz

d2

= ~T2H =0 (5)

where I'? = k2 + k2 — k2. In each layer the wavenumber k
is given by kN, where k,=w/c is the free-space wave-
number and N = (¢,u,)"/? is the complex refractive index
of that layer. T itself is defined as the root of I'? with
nonnegative real or imaginary part. The solution of (5) is
given by

E(z,k)=Aexp(—Tz)+ Bexp(I:z)
H(z,k)=Kexp(—Tz)+ Lexp(Tz). (6)

Wz

Fig 2. Boundary conditions at the interface of two media.

The vectors K and L are not independent of 4 and B.
The relation between them will be established below.

As a second and essential step, we introduce the projec-
tion of every vector on three orthogonal directions. An
arbitrary vector W is characterized by the three number
W., W', and W as follows:

W=Wu,+[Wk+W (u,xk)]/(k2+k2). (7)

It is clear that E’, E”, E,, H', H”, and H, are of the
form (6) but with the vectors replaced by scalars. With the
notation introduced above, the divergence equations in (3)
reduce to dE, /dz = jE’ and to dH,/dz = jH’. The rotor
equations projected on the z axis yield the relations E” =
wiH, and H”= — weE,. Taking the above results and
considerations into account, we finally arrive at the follow-
ing representation of the fields in each layer:

E'(z,k)y=Aexp(—Tz)+ B exp(Tz)
H'(z,k) = (jwe/T)[Aexp(—Tz)— B’exp(Iz)]
E(z.k)=(—j/T)[A'exp(~Tz)— B'exp(Tz)] (8)

and
E"(z,k)=A"exp(—Tz)+ B"exp(Tz)
H'(z,k) = [T/(= jop)][4”exp(—Tz)— B" exp(I'z)]
H,(z,k)=(1/wp)[4”exp(—Tz)+ B"exp(Tz)]. (9)

As shown by (8) and (9), this representation of the fields
falls apart into two sets of decoupled equations: one set
for E’, H”, and E, and a second set for £, H', and H,.
The first set is a TM mode as the z component of the
magnetic field is zero. The second set is a TE mode. The
couples (E’, H”) and (E", H') behave as voltage and
current across a transmission line. The constants A’, B’
and 4”, B” must be determined by applying the boundary
conditions between the layers of the medium. The continu-
ity of the tangential electric field between layer 1 and layer
2, (see Fig. 2) leads to

E{—E{=0
E;'—EJ =0.

(10)

The tangential magnetic field is also continuous across
the boundary of two layers except for z = d;, where the
Fourier-transformed surface current density J, is present
(see Fig. 2). In that case the appropriate boundary condi-
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Fig. 3. Transmission line equivalent with unit current source.

tion is
r__ P e . T
H{—Hj=—J{

Hy'— HJ =+ JJ. (11)

Additional boundary conditions are given by the fact that
E’ and E” are zero at the perfectly conducting ground
plane, ie., for z=0; hence 4]+ B{ =0 and Ay + By’ =0.
Finally, in the uppermost layer, only outgoing waves can
exist. This implies B; =0 and B’ = 0.

When we take all boundary conditions into account, the
final form taken by the fields can be expressed very
concisely by introducing the following functions:

e'(z. k) =—E'(z,k)/J{(k)
e’(z,k)=+E"(z,k)/J¢(k)
W(z,k)=—H"(z,k)/J§(k)
W(z,ky=+H'(z,k)/Jy (k). (12)
In both cases, e and 4 in each layer can be written as
e(z,k)=a(k)exp(—Tz)+ B(k)exp(Iz)
h(z, k) =Y(k)[a(k)exp(—Tz)— B(k)exp(Tz)]. (13)

The e and h functions can be determined through the
solution of a single transmission line problem. This trans-
mission line equivalent is shown in Fig. 3. The source is a
unit current source located at z =d;. In the single-prime
case, the characteristic admittance Y=1Y"= jwe /I'. In the
double-prime case Y=Y"=—TI/jwp. The transmission
line formalism to study stratified media was extensively
used in the past [8]-[11]. The determination of the «’s and
B’s in each layer seems straightforward. However, due to
the presence of increasing and decaying exponentials, the
numerical problem is rather heavy and some analytical
preprocessing must take place in order to develop a
numerically stable procedure, especially in the presence of
highly lossy materials, as in the case of biological tissues.
At the first interface (z = d,), the presence of the surface
current density leads to the following relationship:

1/2 Q+wyexp(T; - T)d, (1-wyexp(I1+13)d;
(/)|(1—u)exp—(r1+r2)d1 (1+ wyexp (T, — T1)dy
0| [(~1/2¥)exp(Tydy) o
18,1 (/27 exp (- Ty By (14)

where u=Y,/Y,. For the other interfaces (z=d,, j=
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2,-++,n—1) we have

A+v)exp(L,-T,.)d, (1~-v)exp([,,+T))d,

1/2

‘/"<1—v>exp—(r,+1)+1)d, 1+ 0)exp(T,, ~T)d,
a1 e,
180718 (15)

where v=Y ,/Y. A modified form of the matrices in
(14) and (15) and their inverses forms the basis of a
suitable algorithm for the calculation of the a’s and B’s.
We refer the reader to the Appendix for the final results
and a proof of the numerical stability of the proposed
method.

IV. INVERSE FOURIER TRANSFORMATION AND

FOURIER—-BESSEL INTEGRALS

A. General Formulation

The dyadics G,(r|r’) and G,(r|r’) both satisty the prop-
erty expressed by (2). If we represent the Fourier transfor-
mation of G,(rlr'=dyu.) and G,(r|r'=du,), ie., for
r/ = 0 by, respectively, (_;e(z, k) and (_?—h(z, k), the convolu-
tions in (1) together with the property (2) lead to the
following result in the Fourier domain:

E(z,k)=G,(z, k) J(k)

H(z,k)=G,(z, k) J(k). (16)

We introduce the polar coordinates A and ¢ in the (k,, k)
plane: k =Acos¢ and k, =Asing. If we take a close
look at e and #, we see that they depend only upon A and
not on ¢. We now turn to the x, y, and z components of
E(z,k) and H(z, k), taking into account the projection
equation (7). Starting from (8), (9), and (12), E and H can
be expressed in terms of the x and y components of
Jo(k). This leads to the following final form for the
Green’s dyadics: )

(.;_‘e(z,k)
—e'cos?p + e’ sin’¢
=|—(e’+e”)cospsing
(1/we)h'Acos ¢

—(e’+e”’)cos¢psing
—e’sin’¢ + e” cos? ¢
(1/we)h'Asing
(17)

and

_ —(h"—h)cos¢sitg h”cos?¢ + h'sin*¢
Gy(z,k)=| — n"sin’¢ — W' cos’¢  (h”—h')cospsing
—(1/wp)e”Asing (1/wp)e"Acos ¢

(18)

Our final goal is to calculate the inverse Fourier transfor-
mation of the above dyadics. For this purpose we intro-
duce the polar coordinates p and 6 in the (x, y) plane:
x=pcos® and y =psind, If we also introduce ¢ = ¢ — 8,
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the inverse Fourier transformation in (4) takes the form
f(p.8.2) = (120) [ [T7(2, X, 8)e NN dN d.
0 o
(19)

If f(z, A, $) can be written as

[ee]

f(z,N,¢)= Y ¢, (z,X,0)cosmy

m=20

+ s,,(z,A,8)sinmy (20)

0

ﬁMs

then f(p, 48, z) becomes
fle.8,2)=(Q1/27) X ()"
m=20
-foocm(z,K,H)Jm(Xp)kd)\. (21)
0

To obtain this result we used the following integrals:

fzwcos mbe=2¢%0 40 =2q(— jY"J (z)
0

/ 27 Sin mle ™70 44 = 0, (22)
0

We now apply the results given by (20) and (21) to find the
inverse Fourier transformation of the dyadics in (17) and
(18). We remark that all elements of C_?e and (_;h can be
written in the form (20) but with m restricted to 0, 1, or 2.
Application of (21) gives the following final result:

Wy — Wicos28 — W5 sin28
G.(rl0) =| —Wgsin20  WE+Wecos20
Wicos b W sind
— Wy'sin26 Wi+ Wicos26
G, (rl0) =| — WP+ Wicos28  Wisin26 | (23)
—W/sing Wicos @

The argument (#|0) of the dyadics indicates that the result
is valid for a point source located at #'=d,u,, hence for
x’=y’=0. The property (2) allows us to find G, and G,
for arbitrary » and #’. The W, in (23) are

Wi(p,z)=(1/27) /()""w,(z,x)f,(xp)m (24)

with the following values for the w;:

wi=(—e'+e")/2 wl=(h"+h")/2
wi'=e"\/(jop)

wy=—(e'+e")/2 wy =(h'=h")/2.  (25)

To calculate W, it is important to know the kind of
singularities that occur in the complex A plane. Although a
strict proof can be given, we only state the final result,
which is a familiar one [12]. The only branch cut is the
branch cut originating from I, of the uppermost layer of
the medium. As we only treat the case of a layered

wi=h'A/( jwe)

TABLE 1

BEHAVIOR OF THE w FUNCTIONS FOR A = 0 (x =z —d)
term in A%e Mo in AeAx ine Ao
- wEA —4,/2 —A,8/2  AB/4+C/2—A,5%/4
SwEA A, 4,8 —A,D,/2+ 4,5%/2
— wEA —4,/2 —-A,8/2  AB/4-C /2~ 4,5%/4
BwiA 0 F/2+G, /2 FS8/2+G,S/2
—wiA 0 -G, -GS
dwEA 0 F/2-G /2 FS/2—-G,S/2

biological medium, the uppermost layer of the stratified
medium consists of lossy material. In that case there are no
poles on the real A axis and the branch point itself is not
located on that axis. These considerations lead to the
conclusion that part of the integration in (24) can be
carried out along the real A axis. This is similar to the
approach used in [3], where it is stated that due to the
presence of losses integration along the real axis becomes
the most efficient.

B. Analytical Integration of Part of the Integrals

A first difficulty in the calculation of (24) is the behavior
of the integrands w,A for A — co. To find this behavior we
start from

lim T'= lim (R —k2)2=X—k22].
The value of k& was defined by (5). Substituting this limit
in the a’s and B’s given in the Appendix and inserting
those values in the expressions for the e’s and the 4’s, the
following final results are obtained: For each layer j=
2,---,n the product Aw,(z,A), with i=0,1,2, in the in-
tegrand of (24) decays exponentially with a factor
exp[—A(z—d,)] (6 =1 in Table I). In the first layer
(j=1) this product exhibits an exponential growth with
this same factor (6 = —1 in Table I). For the six different
products (subscript 0, 1, or 2 and superscript e or /) the
first three terms of the expansion for A — oo are given in
Table 1. The coefficients Aj, B,C,D,F,G, and S, are
given by

(26)

§; = [kf(z _d,—1)+k1271(dj~1— dj—Z)
+ o +k%(d2_d1)]/2
J 1 J 2 2 €1—1
F=(1/2 D = k k
( / )lgz 1+€z— J lgz( -1 1)61_‘_(1_1
J 2“1—1
G =(1/2 —— A =F I
J ( / )lgz .U‘i+‘U4[71 7 j/(‘]wej)
_ 2 .
B, =D +k; C=—jop,G,. (27)
These results are valid for j=2,-+- n. If j=1 we have
51=k12(dl_2)/2
A,=4, B, =B, Ci=G,
Fi=eF, /¢, Di=—-¢,D,/¢ Gy =pyGy /M-
(28)
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TABLE II
CONTRIBUTION TO (24) COMING FROM THE ASYMPTOTIC VALUES
OF THE INTEGRANDS IN (25) WITH x = z — d; AND
r= (x2 T+ pz)-l/z

i=0 i=1 i=2
m=0 T (A~ x7)/p A - x7)*/(p*r)
m=1 x7? ot [2—@2x3 +3xp?)7%] /p?
m=2 2x% - p*)r® 3pxt’ 3073

As the arguments of the Bessel functions J, in (24) are
real, the results in Table I show that the integrands of (24)
have an exponential decay determined by the longitudinal
distance (z —d,) between the location of the exciting
current and the observation point. This ensures conver-
gence of the integration over A from 0 to co. However, this
is not the case when this distance becomes zero, i.e., in the
plane of the exciting current. In that case the integrands
become infinite as a power of (A)3/? for the case of the
electric field (superscript e) and as a power of (A)/? for
the case of the magnetic field (superscript /). This can
casily be checked from Table I in conjunction with the fact
that the Bessel functions J,(Ap) have a (Ap) /2 depen-
dence for A — oo and for a fixed p value. This special case
for z = d, is very important if the Green’s dyadics are to
be used as the basis for the solution of an integral equa-
tion. The integral of the asymptotic parts given in Table I
can be calculated analytically. To that purpose we need the
following integrals:

f°°>\'"J,.(>\p)e~M A\ form=0,1,2and i=0,1,2.
4]
(29)

The notation x stands for the distance (z —d,). These
integrals can be derived from results in the literature [13].
The final results are shown in Table II, where 7= (x?+
012,

Although it would be possible to disregard the cases
where (z — d;) differs from zero, we take advantage of the
fact that the behavior for A — oo can be found analyticaliy
to reduce the burden on and to enhance the speed of the
numerical calculation. Strictly speaking, the integrals in
(29) with x =0 do not exist. However, in the problem we
are dealing with we are only interested in the limit x — 0.
It is not allowed to interchange the integration and the
limiting process. The limits for x = 0 are easily found from
Table II. These limits become singular for p —> 0. As for
x — 0, this is also important when using the Green’s dy-
adics as the kernel of an integral equation if source and
observation point coincide. This difficulty is one of the
reasons why the authors in [6] state that they abandoned
the use of the above Green’s dyadics for their purpose. It is
shown in another paper [7] that this difficulty can be
circumvented, keeping the advantage of the Green’s func-
tion approach presented here.

C. Numerical Calculation of the Remaining
Fourier — Bessel Integrals

If we subtract the parts shown in. Table II from the
integrands in (24) and determine the integral of the sub-
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tracted parts in the way discussed above, we only need to
calculate integrals of the form

[T 5(Ap)e™dN  fori=0,1,2 (30)
0

where x=z—d; and f(x,A)=01/\) for A > . As
long as p # 0 the integral in (30) is convergent, even for
x = 0. In this last case, the absolute value of the integrand
decays as 1/X/2. If, however, p =0, the integral in (30)
becomes zero for i=1, 2 but difficulties can be expected
for i=0 and x = 0. In that last case the 1/\ behavior of
f(x =0, ) no longer suffices to make the integral conver-
gent. Two types of such integrals have to be considered. A
first integral is derived from W¢ in (24). In that case one
can rather easily prove that f(x =0,A)=0(1/A?) for A =
co. A second integral, however, is derived from Wy anfi
the integral is divergent for p =0 and x = 0. To deal with
this difficulty we could follow an approach similar to the
one adopted in the previous section. As our interest is
more focused on the calculation of the electric Green’s
dyadic as the basis for the solution of an electric field
integral equation, we will not go into further details here.
Working with lossy media, neither a branch point nor
poles are located on the real A axis. For the actual
numerical integration we subdivide the integration intervai
into two parts:

Df(x’?\)Ji(kp)e‘“cm+f:f(x,>\)fl(>\p)e-“d>\.
(31)

The upper limit A, is chosen such that both f(x,A) and
J(Ap) take their asymptotic form for A — 0. The first

integral in (31) can be rewritten as

fwg(x,A)J,.(xp)dA for i =0,1,2.
0

(32)
This integral is calculated using a Romberg extrapolation
scheme. For the integrals under consideration this scheme
proved to be a very efficient one.

Finally, the second integral in (31) must be calculated.
To this end we introduce Ap as a new integration vari-
able, rewrite the Bessel function J(Ap) as [H®(Ap)+
H®(Ap)]/2, and introduce the asymptotic form for large
arguments of the Hankel functions:

H®(z) = [P(2)+ jQ.(2)] /™

HP(z) =[P(2)- jO,(z)] e~ (33)
with
a=(2i +1)(m/4)
P(z)=(2/mz) 1=, /224 e, /24 + -]
Q;(Z)=(2/'”,'Z)1/z[d1/z - d2/23+ ] (34)

The constants ¢, ¢,, - and d;, d,,--- are to be found
in the literature [13]. The integral to be calculated takes the



880 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 5, MAY 1988

form
(1/20)e 7 [ 12 M[B(Ao)+ j,(Ap)] e Opa
+(1/20)e [ “f(z,)

(35)

where B® =x/p—j and B®=x/p+ j. For the first
integral in (35) we change the integration path from the
real axis to the line Ap =¢/8® + X p, with 0 <7 < 0. The
value of A can be chosen such that no pole or branch cut
contributions need be taken into account by the change of
integration path. A similar reasoning can be applied to the
second integral in (35). For that integral we change the
integration path to Ap=1/8® + A _p. Both integrals can
be taken together. The final result is

’ [Pz(}\P) - ]Q,()\p)] e‘B(Z)O\p)‘D dA

(1/20) [ “g(t)erar (36)

where g(¢) takes the form
exp[—(BUNp + ja)] £[2.AV]

(P [ADp] + j0,[ADp] } /8D

+exp[— (8PN — ja)] f[2,A%]

A{ P[\] - j0,[A®]}/B® (37)

and with A® =¢/B0p+ A, and \®=¢/8% + A,. The
integral (36) can now be evaluated in a numerically accu-
rate fashion by applying Gauss-Laguerre quadrature for-
mulas.

V. CONCLUSIONS

We have shown in this paper that the determination of
the electric and magnetic fields everywhere in space gener-
ated by a surface current density located at the interface of
a planar stratified medium reduces essentially to the calcu-
lation of Fourier—Bessel integrals. Although this result is
quite familiar, great effort was spent to formulate the
problem in such a way that numerical difficulties in the
calculation of those Fourier—Bessel integrals can be cir-
cumvented. The analytical procedures introduced for that
purpose make it possible to calculate the Green’s dyadics
in the source region itself and in the presence of media
with high losses. This is an essential step towards the use
of these dyadics in the formulation of an integral equation
for the surface current on a microstrip antenna. It is shown
elsewhere [7] that such an integral equation based on the
dyadics calculated in the present paper leads to the solu-
tion of the power deposition of a microstrip antenna inside
a layered biological tissue.

APPENDIX
SOLUTION OF THE TRANSMISSION LINE PROBLEM FOR
THE &’S AND f8’s

We will not go into the details of the calculations. The
final result is

[kZ][Mnn—l] e [M32][N2]
[kZ][MnnAI] e [M21][k1]
elndn-1-Ta1(dy1~dy_3) -+ —Ta(dz—dy)

[kz][Mnn—l] T [le][k1]

[cj] = ]’}(1 _ e‘zrxdl)er,dj—1—rj—1(d,—1*dj—z) - =Th(dy—dp)

My I, 0K
[k2][Mnn—1] T [le][kl]

e

BjeZI‘JdI

o, =—Te 14

&=~ T,(1- ¢ 2i4)

(A1)

with [¢,]=

In (Al) j takes the values 2 to n —1. For T}, T, and T, we
have

n=1/(vY)) TL=1/Q¥Y/
T,=1/QYY, - Y{).

Yy)
(A2)

In each layer the quantity Y’= jwe/T. The matrices
[M) 1] and [M/, ] are defined as

DR = )™
i+l (m'=n")e" 04 (m+ n’) X114,

(A3)

and

[M11,]
_ (1) (e 2O (et
(n'—m')e L4 (m'+n)

(A4)

where m'=1/Y’,, and n'=1/Y’. We have also intro-
duced the matrices ¢, j=1,---,n, [N], [k], [k,] and

[k,

B Q, B 1/2ezr2d1
[cj]— B, [N]‘|_1/2
d=|_1| -0 u o kI=[)] @9

The results in (A2), (A3), and (A4) show that only divi-
sions by Y’ occur. As Y’'= jwe/T no difficulty occurs
when I' becomes zero. Analogous results are found for the
double-primed quantities. In that case 7;, T, and T,
become \

I =1 7;‘:(}/,"—'1};'—'2"')’2")/2
T,= (Y, Y5 Y) /2. (A6)

The matrices [M,,,] and [M/], ] are defined in the same
way as their single-primed counterparts in (A3) and (A4),
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but m’ must be replaced by m” =Y and n’ must be
replaced by n” =Y/,. Note that now only products by Y”
occur. As Y= ~T/jwp no difficulty occurs when I' be-
comes zero. Remember that 8, = 0 and B, = — a, for both
single- and double-primed quantities.

Finally we show that only decaying exponentials play a
role in the matrix products occurring in (A1). We first look
at the denominator of the a’s and B’s. We also need the
following general result:

Ao~ 2T

Ape b4

4y,

| Bje™2Tmdi B, |
Ay

=|Cie™ 2 G, (A7)

where
Cl = BlAlle‘zrj-&-l(djﬂ_dj) + B2A21
C,=B,A,,e? (A8)

Only decaying exponentials are involved in the calculation
of C; and C,. The denominator in (Al) is calculated
starting from [k,]. Multiplication with [M,,,," ;] gives a row
matrix of the form of the B matrix on the left-hand side of
(AT). {M,_,, ] is of the form of the 4 matrix in (A7).
Hence, multiplication results in the C matrix, which has
the same form as the B matrix. The above process is
repeated at every step of the denominator calculation.
Analogous reasoning applies to the numerator of «;. For
the calculation of the numerator of [¢;] we start from [k,].
The stability of the procedure can be proved using differ-
ent A, B, and C matrices:

rj+1(dj+1"dj) + BZAZZ‘

C, | 4, ALend || B
Cye 204 N Aye™ 24 A22e2(1}+1—rj)d1 Bje~ 2Ti+1din
| (A9)
where
Cy=B,Ap,e™?lml1=d) + B 4,
Cy= Bydpe éi=d) 4 B 4 (Al0)
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